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Two new experiments were created to characterize the elasticity of soft tissue using
sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700
ultrasound machine shows a moving interference pattern that travels at a very small fraction of the
shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of
the moving interference pattern using the arrival times of these same patterns. A geometric optics
expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times
to the moving interference pattern speed and then to the shear wave speed. A cross-correlation
procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve
method computes the speed of the interference pattern. The algorithm is tested on data from a
phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
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PACS number�s�: 43.80.Qf, 43.20.Jr �FD� Pages: 2438–2446
I. INTRODUCTION

The target in this paper is to produce an image of tissue
where the imaging functional is a measure of shear stiffness.
This problem has been addressed for over 10 years and is
motivated by the fact that shear stiffness is the tissue elastic
property that is felt in a palpation exam. Three types of ex-
periments have emerged.

�a� Static experiment: The tissue is compressed �Konofagou
et al., 1998, 2000a, b; Konofagou, 2000; Ophir et al. 1991�.
�b� Transient experiments: �1� A wave is initiated with a line
source on the boundary, �Bercoff et al., 2001; Catheline
et al., 1999; Gennisson et al. 2003; Sandrin et al., 2001,
2002a, b; Tanter et al. 2003�, or in the interior �Bercoff et al.,
2002, 2004�, and a wave with a front propagates away from
the source; �2� a wave is initiated at a point �Nightingale et
al. 2002, 2003�, and propagates away from the source; and
�3� a traveling wave is produced by harmonic excitation at
two different points, each excited at two different but nearby
frequencies �Wu et al., 2004, 2006�.
�c� Dynamic excitation: �1� A time harmonic excitation made
on the boundary creates a time harmonic wave in the tissue
�Lerner et al., 1988; Gao et al., 1995; Levinson and Sata,
1995; Taylor et al., 2000; Manduca et al., 2001; Wu et al.,
2002�; and �2� a time harmonic excitation in the interior
�Greenleaf and Fatemi, 1998� creates a time harmonic radi-
ating wave.
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For most of these experiments interior displacement on a
fine grid of points in an imaging plane is measured with
ultrasound or magnetic resonance and the excitation is low
frequency �50–200 Hz�; in Greenleaf and Fatemi �1998�. an
interior point source excitation at a few kilohertz yields a
radiating wave which is measured on the surface of the body.

In McLaughlin and Renzi �2006a, b� the authors devel-
oped the Arrival Time algorithm for the transient elastogra-
phy experiment developed in the laboratory of Fink �Cathe-
line et al., 1999; Sandrin et al., 2002a, b�. Important features
in this work are: �1� A line source, with central frequency
�50–200 Hz�, initiates a shear wave with a front propagating
in the interior; �2� the ultrafast imaging system developed by
Fink et al. has a frame rate of up to 10 000 frames/s en-
abling identification of the wave front and its arrival time on
a sufficiently fine grid in the image plane; and �3� the Arrival
Time algorithm recovers the shear stiffness in the imaging
plane from the space/time position of the wave front.

In this paper we focus on the application of the Arrival
Time algorithm to image shear stiffness using data from two
new sonoelasticity experiments developed by Wu and Parker
at the University of Rochester. The key feature of these ex-
periments is that the display of the Doppler spectral variance
on a GE LOGIC 700 Doppler ultrasound machine shows a
very slow moving traveling wave.

In the crawling wave experiment �Wu et al. 2004, 2006�,
two time harmonic excitations at nearby but not equal fre-
quencies, are created on opposite sides of the tissue. In the
holographic wave experiment �Wu et al. 2006�, one time

harmonic excitation is made in the tissue, and a second os-
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cillation at a nearby but not equal frequency is made in the
ultrasound transducer where a gel is applied so that no re-
sultant wave propagates into the tissue.

The common features of the two experiments are: �1�
The GE LOGIC 700 display shows the radial component of
a slowly moving interference pattern which would be sta-
tionary if the frequencies were the same; �2� the speed of the
interference pattern is a small fraction of the shear wave
speed; and �3� a Doppler ultrasound scanner samples the
very slowly moving interference pattern effectively at a
frame rate similar to the ultrafast imaging system frame rate
for a wave moving at the shear wave speed. The main dif-
ferences of the two experiments are: �1� The crawling wave
interference display is governed by the sum of the two waves
generated by the sources; and the holographic wave display
is governed by the relative motion of the tissue oscillation
and the transducer oscillation; �2� the interference pattern for
the crawling wave has nearly parallel interference maxima;
and for the holographic wave the interference patterns are
more circular; �3� the amplitude of the holographic wave
decreases with distance from the source; and the amplitude
of the crawling wave is more uniform; �4� for the holo-
graphic wave the speed of the moving interference pattern is
directly proportional to the shear wave speed; and for the
crawling wave the relationship between the speed of the in-
terference pattern and the shear wave speed is quite compli-
cated in inhomogeneous regions; see Sec. IV; and �5� an
advantage of the holographic wave experiment is that the
tissue need only be accessible for excitation in one location.

To create our images we treat a stripe in a moving inter-
ference pattern as a wave packet and then: �a� Identify the
arrival time of the wave packet at each point in the image
plane; �b� find the Eikonal equation satisfied by this arrival
time; and �c� apply the level curve method for the Arrival
Time algorithm �McLaughlin and Renzi, 2006b� to the Eiko-
nal equation to solve an inverse problem and image stiffness.
Prior to this work, Wu et al. �2004� used the distance be-
tween interference maxima in the crawling wave experiment
in a homogeneous phantom to determine the constant speed.
This method, called the low frequency estimation method, is
also applied to both experiments performed on a phantom
with inclusion in Wu et al. �2006�. In the current paper, the
image of the inclusion is significantly improved when the
image is created with the Arrival Time algorithm. Further-
more, the Arrival Time algorithm is fully two dimensional,
taking into consideration the depth and transverse spreading
of the lines of constant phase.

The rest of this paper is composed as follows: The ex-
perimental setups for each experiment are illustrated in Sec.
II. Next, the mathematical model for each experiment is
given in Sec. III. The equations relating the moving interfer-
ence pattern speed and the shear wave speed are derived in
Sec. IV. Two subalgorithms needed to create the shear stiff-
ness images are explained in Secs. V and VI. Section VII
contains reconstructions of a heterogeneous phantom with
data from both experiments. Concluding remarks are given

in Sec. VIII.
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II. EXPERIMENTAL SETUPS AND THE DATA

The experimental apparatus for the crawling and holo-
graphic wave experiments are shown in Figs. 1�A� and 1�B�.
The GE LOGIC 700 Doppler ultrasound machine presents a
4 bit display of the Doppler spectral variance which is a good
estimation of vibration amplitude �Wu et al., 2004� and
therefore displays a wave slowly moving across the screen.
The Doppler spectral variance is the square of the sum of the
excitations in the crawling wave experiment or the square of
the difference in the excitations in the holographic wave ex-
periment under some assumptions explained in the follow-
ing.

For the crawling wave experiment we represent the ra-
dial components of the wave from each source as
Ar sin��1t−�1�1�, Br sin��2t+�2�2�. The backscattered ul-
trasound signal �see Huang et al., 1990� can be represented
as

s�t� = cos��0t +
4�

�0
�Ar sin��1�t − �1��

+ Br sin��2�t + �2����
where �0 is the ultrasound frequency and �0 is the wave-
length of the ultrasound wave. Using basic trigonometry we

FIG. 1. �Color online� �A� Setup of the crawling wave experiment. Here the
shear wave vibration sources are at �a�, and the biomaterial and ultrasound
probe are at �b� and �c� respectively. �B� Setup of the holographic wave
experiment. Figure taken from Wu et al. �2006�.
can rewrite s�t� as

ghlin et al.: Wave speed recovery using interference patterns 2439



s�t� = cos��0t +
4�

�0
G sin�t��1 + �2�/2

− ��1�1 − �2�2�/2 + ��� ,

where

G = ��Ar + Br�2 cos2�t��1 − �2�/2 − ��1�1 + �2�2�/2�

+ �Ar − Br�2 sin2�t��1 − �2�/2 − ��1�1 + �2�2�/2��1/2

and

� = tan−1��Ar − Br

Ar + Br
�tan�t��1 − �2�/2

− ��1�1 + �2�2�/2�� .

In our examples �1−�2	0.1 Hz and �1+�2	400 Hz, so
G and � are slowly varying and can be considered as
stationary during the time interval for calculating the
spectral variance. The Doppler spectral variance is then
proportional to G2 which is, again using basic trigonom-
etry, with ��x , t�= t��1−�2�− ��1�1+�2�2�,

G2 = Ar
2 + Br

2 + 2ArBr cos ��x,t� . �1�

For the holographic wave experiment let B sin��2t� be
the vibration of the ultrasound transducers; the backscattered
signal is the vibration of the tissue relative to the vibration in
the transducer, so

s�t� = cos��0t +
4�

�0
�Ar sin��1t − �1� − B sin��2t���

= cos��0t +
4�

�0
G̃ sin�t��1 + �2�/2 − �1�1/2 + �̃��

where

�̃ = tan−1�Ar + B

Ar − B
tan−1�t��1 − �2�/2 − �1�1/2�� .

Here the displayed quantity is

G̃2 = Ar
2 + B2 − 2ArB cos ��x,t� , �2�

where now �2=0 and so ��x , t�= t��1−�2�−�1�1.

Both G2 and G̃2 can be rewritten as the amplitude of the
sum �or difference� of the complexification of the induced
vibrations

G2 = 
Are
i�1�t−�1� + Bre

i�2�t−�2�
2,

G̃2 = 
Are
i�1�t−�1� − Bei�2t
2.

These are the identities presented in Wu et al. �2006�. Here
we explain the assumptions under which they are obtained
from the spectral variance.

III. MATHEMATICAL MODEL

Because stiffness is an elastic property and the displace-
ments generated from the vibrators are small �on the order of

microns�, we use the linear elastic system of differential
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equations as our mathematical model. Assuming also that the
medium is isotropic, the vector elastic displacement, u, is
then governed by the following system of equations:

��uj,j�,i + ���ui,j + uj,i��,j − �ui,tt = 0, �3�

where �, � are the Lamé parameters and � is the density.

IV. EQUATIONS FOR THE IMAGING FUNCTIONALS

In the crawling wave experiments, the displacements
u1 ,u2, from the first and second vibration sources, respec-
tively, and u=u1+u2 all satisfy Eq. �3�. The goal here is to
find an equation for the phases for each of these quantities
and then to derive a relationship between the phase ��x , t�
= t��1−�2�− ��1�1+�2�2�, or ��x , t�= t��1−�2�−�1�1,
seen in expressions �1� and �2�, respectively, and the shear
wave speed.

To accomplish this goal we first assume that u ,u1 ,u2

represent the complexification of the corresponding displace-
ments. We use the geometric optics approximation �Ji et al.
2003; Ji and McLaughlin, 2004� for u1,

u1�x,t� = Aei�1�t−�1�, �4�

where A is represented by the asymptotic expansion, A=A0

+A1 / �i�1�+A2 / �i�1�2+ ¯ . Substituting this expansion into
Eq. �3�, writing the left-hand side of Eq. �3� in powers of �1,
and setting the coefficient of the highest order terms of �1

equal to zero results in �see Ji and McLaughlin, 2004�

0 = MA0, �5�

where M is the following matrix:

M = ��� + �� � �1���1�T + ��
��1
2 − ��I� . �6�

The assumption here is that there is enough separation of
scales so that the coefficient of each power of �1 is sepa-
rately equal to zero. For Eq. �5� to have a solution, the matrix
M must be singular. Setting the determinant of M equal to
zero yields that either


��1�x�
 = ��/� = 1/Cs, �7�

or


��1�x�
 = ��/�� + 2�� = 1/Cp, �8�

where Cs and Cp are the shear and compression wave speeds,
respectively. Equations �7� and �8� are called Eikonal equa-
tions. In soft tissue, � is several orders of magnitude greater
than � �Sarvazyan et al., 1995�. Furthermore, for the con-
stant coefficient case in an elastic half space, the exact solu-
tion of Eq. �3� has been found in Miller and Pursey �1954�
and from this solution it is clear that the amplitude of the
compression wave is very small, O��� /��2�, when the ratio
� /� is large. For this reason we will assume that Eq. �7� is
satisfied. Likewise, we write the displacement, u2, from the
second source as

u2�x,t� = Bei�2�t−�2�t�� �9�

and as above, the phase, �2, satisfies

�

��2�x�
 = �/� = 1/Cs. �10�
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To obtain the equation for � we use the idea that � and
the speed, F, of the moving interference pattern in the direc-
tion −�� satisfy the Eikonal equation 
���x , t� 
F�x�=�t.
�See Osher and Sethian �1988�; Sethian �1999�; Osher and
Fedkiw �2002�, and Appendix A.�

In addition, because �t is the constant 	�=�1−�2, only
the spatially varying component of the phase, which is

�̂�x�=�1�1+�2�2 for the crawling wave and �̂�x�=�1�1

for the holographic wave is present in the formula for the
speed, F. So

F =
�1 − �2


��̂�x�

=

	�


��̂�x�

. �11�

We use this equation and the Arrival Time algorithm to find
F and use �1F /	� and 2�1F /	� as our imaging functionals
for the holographic wave and crawling wave experiments,
respectively, as we explain below.

The speed F is a simple multiple of the shear wave
speed in the holographic wave experiment but not for the
crawling wave experiment. To show this we first calculate


��̂�x�
2 as


��̂�x�
2 = 
�1 � �1�x� + �2 � �2�x�
2

= �1
2
��1�x�
2 + �2

2
��2�x�
2

+ 2�1�2 � �1�x� · ��2�x�

= �1
2
��1�x�
2 + �2

2
��2�x�
2

+ 2�1�2
��1�x�

��2�x�
cos�
� , �12�

where 
 is the angle between ��1�x� and ��2�x�. Now, for
the holographic wave experiment �2=0 and

F2 =
	�2


��̂
2
=

�t
2�x,t�


���x,t�
2
=

	�2Cs
2

��1
2�

⇒ F =
	�Cs

�1
or Cs =

�1F

	�
. �13�

For the crawling wave experiment the relationship between
the crawling wave speed, F, and the shear wave speed, Cs, is
more complicated. Therefore, using Eqs. �7�, �10�, and �12�
we have


��̂�x�
2 = �1/Cs
2���1

2 + �2
2 + 2�1�2 cos�
�� . �14�

Calculating the ratio �t
2 / 
���x , t�
2 we obtain

F2 =
	�2


��̂�x�
2
=

�t
2


��
2

=
	�2Cs

2

2�1
2�1 + cos�
�� + O��1	�1� + O�	�2�

�15�

=
	�2Cs

2

4�1
2 cos2�
/2� + O��1	�1� + O�	�2�

. �16�

This equation cannot be used to directly find the wave
speed, Cs�x�, from the phase, ��x , t�, because in the inhomo-
geneous medium case the cos�
 /2� term depends on the un-

knowns �1�x� and �2�x�. However, Eqs. �7�, �10�, and �15�
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are a coupled system of three equations that can be solved
for Cs, �1�x�, and �2�x�. This will be the subject of a future
paper. So here for the crawling wave experiment we do not
image Cs but instead use the quantity 2�1F /	� as an imag-
ing functional. Note that similar expressions relating phase
wave speed to Cs are found in Wu et al. �2006�, under a
locally constant assumption and without showing the rela-
tionship to the underlying elastic equations.

Remark 1: We measure only one component of the vi-
bration amplitude. This is not a restriction since all compo-
nents of the vibrational amplitude have the same phase under
the geometric optics assumption.

Remark 2: The vibration amplitude is measured in a
plane. So, out-of-plane derivatives cannot be calculated and
are assumed to be zero. If there is significant out-of-plane
motion of the moving interference pattern, this assumption
causes overestimation of the imaging functional.

Remark 3: For the holographic experiment the direction

of propagation of the shear wave is ��̂=�1��1 /	�; so the
moving interference pattern moves either in the same �if
�1��2� or directly opposite direction �if �1��2� as the
shear wave induced by the source vibrating in the phantom

�or tissue�. For the crawling wave experiment ��̂= ��1��1

+�2��2� /	�; so the direction of the moving interference
pattern is not, in general, in the same direction as either of
the shear waves induced individually by the two sources.

V. CALCULATING PHASE AND ARRIVAL TIME

To utilize 
��̂ 
F=	� we must first construct a continu-

ously varying phase, �̂, from the data, 
ur
2=Ar
2+Br

2

+2ArBr cos�	�t− �̂�. This is related to the classic phase un-
wrapping problem.

Furthermore, we can interpret a multiple of �̂ as an ar-
rival time. This is based on the observation that at an arbi-
trary fixed point, x0, the time trace of the data can be repre-

sented by a constant plus 2�ArBr��x�cos���2−�1�t− �̂�x��.
After filtering out the constant, consider the time trace

V�x0 , t�=2�ArBr�x0��cos���1−�2�t− �̂�x0��; an example of
this is shown in Fig. 2�A� with a solid line. Now consider the
time trace at a second fixed point, x1, with the additive con-
stant also removed, V�x1 , t�=2�ArBr��x1��cos���1−�2�t
− �̂�x1���; see the dotted line in Fig. 2�A�. Notice that, except
for magnitude, V�x1 , t� is very nearly V�x0 , t� except that it is

time delayed by ��̂�x1�− �̂�x0�� /	�. That is ��1−�2�t
− �̂�x0�= ��1−�2��t+�t− �̂�x1�, and we can interpret �̂�x1�
− �̂�x0� as a scaled time delay. So it is appropriate to define

the quantity �̂�x1� /	�=T�x1� as the arrival time, of the sig-
nal V�x0 , t� at the point x1. With this in mind, for the rest of

this paper, we will refer to the scaled phase �̂�x� /	� as the
arrival time, T�x�.

We compute the arrival time using

C�x,t� ª
1

T
�

0

T

ṽ�x0,t�ṽ�x,t + t�dt ,
where
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˜

ṽ�x,t� = V�x,t� if 0 � t � T̂

V�x,t − T̂� if t � T̂

V�x,t + T̂� if t � 0.

See Fig. 2�B�. Now we estimate the arrival times by T�x�
�tmax, where

tmax ª argmaxt��0,T̂�C�x,t� .

That is, t, maximizes the correlation between the signals
v�x0 , t� and ṽ�x , t+t�. To eliminate nonuniqueness that oc-
curs because the two signals are cyclical, we: �1� Choose one
of the maximums arbitrarily for the first point, x0; then, �2�
for points neighboring x0, we choose local maxima in the
cross-correlation function near the value T�x0�; and �3� to
add stability to our procedure when finding the arrival time,
T�x�, at a new point, x, we use the median value of T at
nearby points, that already have a computed arrival time, as
a starting point.

We will use these computed arrival times as input to an
inverse Eikonal solver described in the following; see also Ji
et al. �2003�; McLaughlin and Renzi �2006a, b�. The output
of this solver will be the speed of the moving interference
pattern.

VI. SOLVING THE INVERSE EIKONAL EQUATION

The quantities 2�1F /	� and �1F /	� are our imaging
functionals for the crawling and holographic wave experi-
ments, respectively. The goal now is to calculate F= 
�T
−1 in
a smart way, avoiding the essentially unstable calculation of
dividing by derivatives of noisy data.

A slow, but robust, second-order method approximates
the speed of the moving interference pattern using the el-

FIG. 2. �Color online� �A� Time traces of vibrational amplitude V�x0 , t�
�solid line� and V�x1 , t� �dashed line�. �B� Cross-correlation function of the
two signals, ṽ�x1 , t� and ṽ�x0 , t�.
ementary idea that speed is distance divided by time. So,
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F �� 1

2	t�min
x̂+


x − x̂+
 + min
x̂−


x − x̂−
�:x̂± satisfies T�x̂±�

= T�x� ± 	t� . �17�

We call this method for finding F the distance method. This
is justified in McLaughlin and Renzi �2006a�. A faster
0�m log m� algorithm is described below.

Starting with the surface ST= ��x , t� 
T�x�= t ,0� t�T ,x
��� where � is the image plane, define the higher dimen-
sional function

��x,t� = ± min
x̂+

�
x − x̂
:x̂ satisfies T�x� = t�

where plus �minus� is chosen if t�T�x��t�T�x��, respec-
tively. Then

��x,T�x�� = 0 for x � �, 
��
 = 1

so that

�t = 
�T
−1 = F on ��x,t�
��x,t� = 0� = ST.

The potentially unstable term 
�T
−1 is now replaced by �t

which is in the numerator; and furthermore, no additional
approximations are made to achieve this equation �see Osher
and Fedkiw �2002�; Sethian �1999�, and Appendix A�. For
our inverse problem to obtain the 0�m log m� algorithm
speed, the extension from ST to � is made quickly and
simultaneously for all times in our discretization. For
those details, refer to McLaughlin and Renzi �2006b�. The
full algorithm for calculating the speed, F, in this way is
called the level curve method. Note that as a final step we
apply total variation minimization, �Rudin et al., 1992�.

VII. PHANTOM EXPERIMENTS

Combining the ideas from Sec. V �arrival time calcula-
tion� and Sec. VI �speed calculation from arrival times� gives
a complete algorithm to recover interference pattern speed.
The data are obtained using a Zerdine tissue mimicking
phantom �CIRS Norfolk, VA�, which is bowl-shaped and
measures approximately 15�15�15 cm in size. The phan-
tom contains an isotropic background and a 1.3-cm-diam iso-
tropic spherical stiff inclusion. The shear wave speed in the
stiff inclusion is approximately �7�2.65 times faster than
the background shear wave speed.

For the crawling wave experiment, two vibration
sources are on opposite ends of the Phantom at frequencies,
250 and 250.15 Hz. Figure 3�A� shows a snapshot of the
interference pattern in a middle region in the plane contain-
ing the two sources and the ultrasound transducer.

The first step to generate a shear wave speed reconstruc-
tion is to find the arrival times, T, from the spectral variance
data. Before we do this, we preprocess the data. We use the
one-dimensional fast Fourier transform on each time trace,

and filter out all the frequencies except for a narrow band
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around the driving frequency, 	�=0.15 Hz. Then we find
the arrival time as discussed in Sec. VI. The interference
pattern speed, F= 
�T
−1=�t, is calculated with the inverse
level curve method for the Arrival Time algorithm. The im-
aging functional, 2�1F /	�, is shown in Fig. 3�B�. The wave
speed contrast of the reconstruction is about 2.33, which is
close to the actual wave speed contrast of 2.65. Note also the
ring-like artifact around the recovered inclusion. This is
likely due to the omission of the cos�
 /2� term in our equa-
tion for the speed.

The interference patterns look very similar to a plane
wave when two point sources are used. For an explanation,
see Appendix B.

For the holographic wave experiment the frequency of

the vibration source is 200.1 Hz. The ultrasound transducer
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is vibrated at 200 Hz. Figure 4�A� shows a snapshot of the
moving interference pattern; it looks like an expanding half
circle as one would expect from a point source. We find the
arrival times, the interference pattern speed, F, as outlined in
Secs. V and VI, and image the shear wave speed Cs

=�1F /	�; see Fig. 4�B�. The imaging planes in the two
experiments are at slightly different locations in the phan-
tom. The black circle indicates the size of the stiff inclusion.
In this reconstruction the wave speed contrast is almost 2,
compared to the actual wave speed contrast of 2.65. There
are fewer artifacts in this reconstruction. This is due to the
more accurate relationship between the interference speed
and the shear wave speed for the holographic wave experi-

FIG. 3. �A� Snapshot of the moving
interference pattern in the crawling
wave experiment. �B� Imaging func-
tional, 2�1F /	�, related to the shear
wave speed in the crawling wave ex-
periment. The units for the axis are
millimeters and the color bar units are
m/s.
ment.
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VIII. SUMMARY AND CONCLUSION

We have developed a new algorithm, composed of two
subalgorithms, to image the speed of moving interference
patterns. The first subalgorithm finds the arrival times of one
of the curves of interference maxima. The second subalgo-
rithm takes as input the arrival times found by the first sub-
algorithm, and finds the moving interference pattern speed
by solving the inverse Eikonal equation using the inverse
level curve method for the Arrival Time algorithm. Our
method is fully two dimensional taking into account both
vertical and horizontal spread in the phase, and would easily
generalize to three dimensions. The imaging functional is a
multiple of the speed of the moving interference pattern.

There are two sources of artifacts in the images. One is

the low bit rate achieved with only 16 levels of quantization

2444 J. Acoust. Soc. Am., Vol. 121, No. 4, April 2007
in the display. We expect significantly less artifacts when the
data gives a 256 color quantization. The second applies to
the crawling wave experiment. Some artifacts occur because
the imaging functional is a nonlinear function of the shear
wave speed. These artifacts may be removed by solving the
equations for �1, �2, and F simultaneously.

Note also, here we only consider interference pattern
speed which is determined from the phase. When 256 color
quantization data are available, one might consider also us-
ing a Helmholtz equation model, which has been considered
in McLaughlin et al. �2006c�; Dutt et al. �1997�; Oliphant et
al. �2000�; Bishop et al. �2000�; and Brown et al. �2001�.
Helmholtz inversion may be possible for the product
A cos�	�t−�1�1� obtained from the spectral variance calcu-

FIG. 4. �A� Snapshot of the moving
interference pattern in the holographic
wave experiment. �B� Recovery of the
shear wave speed Cs in the holo-
graphic wave experiment. The units
for the axis are millimeters and the
color bar units are m/s.
lation for the holographic wave experiment for experiments
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where: �1� There is very little out-of-of-plane motion; and �2�
almost all excitation occurs in the radial direction �or down-
ward direction if that is the direction of measurement�. For

FIG. 5. �Color online� �A� Lines of constant phase for �1. �B� Lines of
constant phase for �2. �C� Lines of constant phase for �1+�2. The solid
black lines enclose the imaging region.
the crawling wave experiment, this approach is more com-

J. Acoust. Soc. Am., Vol. 121, No. 4, April 2007 McLau
plicated since a differential equation that the expression
ArBr cos�	�t− ��1�1+�2�2�� satisfies, even under the sim-
plifying assumptions given earlier, is substantially more
complicated.

It may, however, be possible to obtain a more accurate
phase calculation by using the rf data more directly.

APPENDIX A

In this appendix we show that, on a level surface of the
phase, ��x , t�=k,

�t = 
��
F �A1�

is satisfied where F is the component of the velocity in the
direction, −��, which is normal to the level curve ��x , t�
=k, fixed k. Let X�t� be a parametric representation of a point
lying on ��x , t�=k with x�t0�=x0, some �x0 , t0� satisfying
��x0 , t0�=k. Since −�� / 
��
 is normal to the curve
��x , t0�=k, at x=x0,

F�x0� = Xt · �− ��/�
��
 . �A2�

Taking a time derivative of ��x�t� , t�=k yields

�t + �� · Xt = 0. �A3�

Multiplying through Eq. �A3� by 1/ 
��
, and using Eq. �A2�,
leads to

�t = 
��
F . �A4�

Since �x0 , t0� is arbitrarily chosen on ��x , t�=k, Eq. �A1� is
established.

APPENDIX B

The interference pattern lines in Fig. 3 are similar to a

plane wave for the following reasons: ��̂ /	���1���1

+��2� /	� determines the direction of motion of the inter-
ference pattern; and �2� the image plane window is some
distance from each source and the individual waves from
each source move in opposite directions; this implies that in
the background the vertical components of ��1 and ��2 will
have opposite sign. To demonstrate we solve the equations

��1 
 =1, and −
��2 
 =−1, on a 15 cm�15 cm square with
the initial conditions �1�0,7.5�=0, and �2�15,7.5�=0. The
lines of constant phase for �1 and �2 are simply expanding
circles and are shown in Figs. 5�A� and 5�B�. For �1+�2 the
lines of constant phase, shown in Fig. 5�C�, are given by a
family of parabolas �Wu 2005�. However, near the line equi-
distant to the two point sources the lines of constant phase
for �1+�2 are nearly vertical; see Fig. 5�C�. Note also that in
Fig. 5�C� there are twice as many lines of constant phase as
in Figs. 5�A� and 5�B�. This is consistent with the additional
factor of 2 in the crawling wave imaging functional.
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